

ЗАО «ГЕОЦЕНТР-КОНСАЛТИНГ» Закрытое акционерное общество Научно-производственный геоинформационный центр «Геоцентр - Консалтинг»

Описание функциональных характеристик геоинформационной системы «RuMap: Анализ транспортных сетей» и информация для установки

Аннотация

Данный документ содержит информацию о разработанной в ЗАО «Геоцентр-Консалтинг» геоинформационной системе «RuMap:Анализ транспортных сетей».

Информация, содержащаяся в данном документе, может быть изменена без предварительного уведомления со стороны ЗАО «Геоцентр-Консалтинг».

Никакая часть данного документа не может быть воспроизведена или передана в любой форме и любыми способами в каких-либо целях без письменного разрешения ЗАО «Геоцентр-Консалтинг». © ЗАО «Геоцентр-Консалтинг», 2022. Все права защищены.

Содержание

речень терминов, сокращений и обозначений	
1 Общие сведения	5
1.1 Наименование продукта	5
1.2 Назначение продукта	5
2 Решения по структуре Системы	6
2.1 Архитектура платформы	6
2.2 Состав Системы	6
3 Функциональность Системы	
3.1 Веб-приложение для работы с проектами	7
4 Сведения о программном обеспечении Системы	9
5 Программно-аппаратный комплекс для функционирования Системы	10
1.1 Установка и настройка веб-сервера	11
1.2 Проверка работоспособности	15
1.3 Возможные ошибки	19

Перечень терминов, сокращений и обозначений

В настоящий документ введены специальные сокращения на русском и английских языках:

Сокращение	Определение
	Content Management System (система управления контентом),
CMS	программное обеспечение, которое позволяет управлять
	содержимым ресурса, менять его, просматривать и контролировать
GeoJSON	формат представления различных структур географических данных
ЗАО	Закрытое акционерное общество
ПАК	Программно-аппаратный комплекс
СУБД	Система управления базой данных

1 Общие сведения

Геоинформационная система «RuMap:Анализ транспортных сетей» (далее по тексту – Система) представляет собой российский геоинформационный онлайн-сервис от ЗАО «Геоцентр-Консалтинг», предназначенный для анализа транспортной сети и анализа распределения транспортных потоков.

Состав Системы и её функциональность не являются постоянными, и могут изменяться в зависимости от производственных целей и задач ЗАО «Геоцентр-Консалтинг» без дополнительного уведомления третьих лиц.

Техническое сопровождение и обслуживание по действующим договорам (контрактам) производятся согласно условиям этих договоров (контрактов).

1.1 Наименование продукта

Полное наименование продукта – Геоинформационная система «RuMap: Анализ транспортных сетей».

Альтернативные названия продукта: Система анализа транспортных сетей, САТС, ГИС «RuMap:CATC», Веб-сервис «RuMap: CATC», Геоинформационный веб-сервис «RuMap: Анализ транспортных сетей», Геоинформационный онлайн-сервис «RuMap: Анализ транспортных сетей».

Компания-разработчик и правообладатель - ЗАО «Геоцентр-Консалтинг».

1.2 Назначение продукта

Система предназначена для анализа транспортных потоков, позволяет оперативно оценивать качество принятых проектов планировки улично-дорожной сети и выявлять «узкие» места на дорогах.

С помощью данной Системы может производиться оценка скорости движения автомобилей и распределения транспортных потоков по дорогам России на любых временных срезах, начиная с 2015 года.

2 Решения по структуре Системы

2.1 Архитектура платформы

В архитектуре Системы выделяются три уровня:

- уровень данных;
- серверная часть;
- клиентская часть.

2.2 Состав Системы

В состав Системы входят:

- база данных транспортных потоков;
- «RuMap: Сервис расчета статистических скоростей и транспортных потоков» программный компонент для расчета скорости движения автомобилей и распределения транспортных потоков по заданным временным интервалам на основе графа «RUMAP: ЕДИНЫЙ ГРАФ ДВИЖЕНИЯ»;
- «RuMap: Тайловый сервис» (полное название «RuMap: Тайловый картографический сервис») программный компонент для формирования растровых фрагментов карты (тайлов);
- «RuMap: Сервис прямого геокодирования» программный компонент для поиска объектов и их координат на карте по текстовой строке, содержащей адрес или название объекта:
- веб-приложение для выполнения пользовательских расчетов.

В основе работы сервиса расчета статистических скоростей и транспортных потоков лежат данные о транспортных потоках и архив исторических скоростей являющиеся собственностью ЗАО «Геоцентр-Консалтинг».

Данные о транспортных потоках – это данные о движении автомобилей (треки), геокодированные и объединенные специальным образом.

Веб-приложение предназначено для взаимодействия с пользователем и отображения результатов анализа.

В Системе реализованы два типа расчетов (два типа проектов):

- анализ скорости;
- анализ распределения потоков.

3 Функциональность Системы

3.1 Веб-приложение для работы с проектами

Пользовательское приложение для работы с транспортными данными реализовано в виде веб-приложения. Пользователю доступны следующие функции:

- создание нового проекта нужного типа (анализ скорости или анализ распределения потоков);
- задание области расчета следующими способами:
 - выбор ребер кликами по карте;
 - выбор ребер прямоугольной областью;
 - выбор ребер произвольным полигоном;
 - выбор ребер готовыми шаблонами территорий (административные границы различных уровней, транспортные зоны и т.п.);
 - выбор ребер областью (полигоном или несколькими полигонами), загруженной из файла в формате ESRI Shape или GeoJSON.
 - выбор ребер на основании маршрута (т.е. выборка будет состоять из ребер, составляющих маршрут).
- навигация по карте с использованием инструментов перемещения и масштабирования;
- поиск улиц по адресу;
- выбор типа картографической подложки;
- скачивание карты в формате png;
- задание параметров расчета (расчетного периода и результирующей функции);
- отображение результатов расчета:
 - на карте;
 - в табличном виде;
 - на диаграмме (только для проекта по анализу скорости).
- поиск по таблице с результатами, сортировка и фильтрация результатов;
- настройка вида таблицы (выбор столбцов для отображения);
- скачивание результата в формате csv.
- выбор типа диаграммы;
- настройка отображения диаграммы (выбор результирующих столбцов и функция для оценки количества измерений);
- сохранение шаблона настроек диаграммы;

- загрузка настроек диаграммы из заранее созданного шаблона;
- сохранение диаграммы в формате png;
- редактирование, перерасчет и удаление существующего проекта.

4 Сведения о программном обеспечении Системы

Программное обеспечение Системы включает в себя системное и прикладное программное обеспечение.

К системному программному обеспечению относятся:

- Операционная система общего назначения Astra Linux Common Edition или Debian (ОС с открытой лицензией);
- СУБД PostgreSQL 64 бита версии 10 или старше;
- СУБД sqlite версии 3.

Прикладное программное обеспечение представлено дистрибутивом веб-приложения Системы.

Разработка веб-приложения Системы осуществлена с помощью фреймворка Strapi 3.0.

Strapi — это фреймворк с открытым исходным кодом, для управления контентом, основанный на Node.js. Позволяет достаточно быстро разрабатывать API для работы с данными.

К фреймворку прилагается набор плагинов, расширяющих его возможности: создание панели администратора, систему управления аутентификацией и разрешениями и т.п. Плюсом Strapi является так же то, что CMS разворачивается на собственных серверах.

5 Программно-аппаратный комплекс для функционирования Системы

Система устанавливается на мощностях ЗАО «Геоцентр-Консалтинг», доступ Пользователя к Системе обеспечивается посредством веб-сервиса.

Требования к программно-аппаратному комплексу (ПАК) определяются по запросу в зависимости от территории, необходимого количества запросов к Системе и т.п.

6 Сведения, необходимые для установки и настройки демонстрационной версии Системы

Для установки демонстрационной версии Системы требуется предварительно установленный и настроенный веб-сервер. В случае, если на рабочем месте не установлен веб-сервер, следует воспользоваться дистрибутивом для установки веб-сервера, который передается вместе с дистрибутивом САТС.

Описание установки приводится для операционной системы Windows10PRO 64битной версии.

1.1 Установка и настройка веб-сервера

Скачать дистрибутив по предоставленной ссылке.

Распаковать его архив sats-demo.

Зайти в папку httpd-2.4.39-win64-VC15, выбрать папку Apache24 и скопировать ее на диск C.

Рисунок 1.Скопировать Apache24

Файл vc redist.x64 поместить в папку Apache24 или в корень папки С.

Зайти в папку C:\Apache24\conf

Рисунок 2.Открыть папку conf

И открыть файл httpd.conf с помощью блокнота.

Рисунок 3.Открыть файл httd.conf

В тексте, в строке ServerAdmin заменить admin@example.com навашмейл@xx.ru

```
#
# ServerAdmin: Your address, where problems with the server should be
# e-mailed. This address appears on some server-generated pages, such
# as error documents. e.g. admin@your-domain.com
#
ServerAdmin admin@example.com
```

Закрыть блокнот, сохранив изменения.

Далее следует запустить файл VC redist.x64.

Рисунок 4.Запустить VC redist.x64

После чего возможно потребуется перезагрузить компьютер.

Размер

Далее в папке bin(C:\Apache24\bin) запускаем файл httpd.exe

Рисунок 5.Запустить httpd

Сворачиваем открывшееся окно.

И в строке браузера набираем http://localhost

В результате должно быть открыто следующее окно.

Рисунок 6. Вход в систему

1.2 Проверка работоспособности

Для входа в Систему используется логин и пароль, переданный вместе с инструкцией.

После авторизации будет открыто главное окно Системы. В Системе заранее создано два тестовых проекта, по одному на каждый тип расчета.

Рисунок 7.Главное окно Системы

Для проверки работоспособности необходимо выбрать тип проекта, т.е. кликнуть на наименовании проекта и открыть его.

Выбрав тип проекта «Анализ распределения потоков» будет открыто следующее окно:

Рисунок 8. Результат расчета проекта «Анализ распределения потоков»

Для проверки работоспособности следует выбрать ребро для расчета (кликнуть на нем левой кнопкой мыши). Будет отображена раскраска ребер и числовые характеристики распределения транспорта по ребрам.

Рисунок 9. Распределение транспортных потоков

Выбрав тип проекта «Анализ скорости» будет открыто следующее окно с раскраской по ребрам и числовыми характеристиками скорости на ребре (т.е. значение скорости в км/ч).

Рисунок 10.Результат расчета проекта «Анализ скорости»

На ребрах будут подписаны числовые характеристики скорости, серым цветом обозначены ребра, по которым недостаточно данных для расчета. По клику на ребере будет открыто окно с дополнительной информацией.

Для проверки работоспособности также предлагается создать два типа проектов и запустить их на расчет.

- 1. Создание проекта «Анализ скорости»
 - Выбрать тип проекта «Анализ скорости»
 - В качестве рамки для расчета выбрать полигон, из папки Примеры: population.shp

Рисунок 11. Выбранные для расчета ребра

- Нажать «Далее»
- Загрузить параметры расчета из папки Примеры-Параметры расчета: values.json

Рисунок 12. Параметры расчета из шаблона

• Нажать «Далее».

- Запустить расчет.
- Дождаться, когда расчет будет закончен и проект получит статус готов.
- Нажать на название проекта и посмотреть результаты расчета.

Рисунок 13. Результаты расчета

Создание проекта «Анализ распределения потоков»

- Выбрать тип проекта «Анализ распределения потоков».
- Выбрать в качестве рамки полигон из папки с примерами в формате geojson: reach.geojson.

Рисунок 14.Выбранные для расчета ребра

- Нажать «Далее».
- Загрузить параметры расчета из папки Примеры-Параметры расчета: values.json.

Рисунок 15. Параметры расчета из шаблона

- Запустить расчет.
- Дождаться, когда расчет будет закончен и проект получит статус готов.
- Нажать на название проекта, будет открыто следующее окно:

Рисунок 16.Выбор ребра из результирующего набора ребер

• Левой кнопкой мыши кликнуть по любому ребру.

Рисунок 17. Результа расчета относительно выбранного ребра

1.3 Возможные ошибки

В случае, если пользователь неправильно ввел пароль он может закешироваться, и при последующем вводе правильного пароля может быть получено сообщение об ошибке:

«Неверно введен логин или пароль»

Рисунок 18. Сообщение об ошибке

Для того чтобы избавиться от ошибки, нужно очистить кэш.

Для браузера Google Chrome это можно сделать следующим образом:

- 1. Открыть Инструменты разработчика (Меню -> Дополнительные инструменты -> Инструменты разработчика или F12 или Ctrl + Shift +I);
 - 2. В появившемся окне выбрать вкладку Сеть (Network).
 - 3. Установить галочку Disable cache (Отключить кеш).
 - 4. Перезагрузить страницу.
 - 5. Повторно ввести логин и пароль.

Для браузера Microsoft Edge

- 1.Нажать F12.
- 2.Перейти на вкладку Сеть.
- 3. Установить галочку «Отключить кэш».

- 4.Перезагрузить страницу
- 5. Повторно ввести логин и пароль.

Описание функциональных характеристик Геоинформационной системы « RuMap: Анализ транспортных сетей»

Для других браузеров следует также очистить кеш, перезагрузить страницу и повторно ввести логин/пароль.

Описание функциональных характеристик Геоинформационной системы « RuMap: Анализ транспортных сетей»

Список иллюстраций

Рисунок 1.Скопировать Apache24	11
Рисунок 2.Открыть папку conf	12
Рисунок 3.Открыть файл httd.conf	12
Рисунок 4.Запустить VC_redist.x64	13
Рисунок 5.Запустить httpd	14
Рисунок 6. Вход в систему	15
Рисунок 7.Главное окно Системы	15
Рисунок 8. Результат расчета проекта «Анализ распределения потоков»	16
Рисунок 9. Распределение транспортных потоков	16
Рисунок 10.Результат расчета проекта «Анализ скорости»	16
Рисунок 11. Выбранные для расчета ребра	17
Рисунок 12.Параметры расчета из шаблона	17
Рисунок 13.Результаты расчета	18
Рисунок 14.Выбранные для расчета ребра	18
Рисунок 15.Параметры расчета из шаблона	19
Рисунок 16.Выбор ребра из результирующего набора ребер	19
Рисунок 17. Результа расчета относительно выбранного ребра	19
Рисунок 18. Сообщение об ошибке	20